Monitoring disease progression in transgenic mouse models of Alzheimer's disease with proton magnetic resonance spectroscopy.
نویسندگان
چکیده
Currently no definitive biomarker of Alzheimer's disease (AD) is available, and this impedes both clinical diagnosis in humans and drug discovery in transgenic animal models. Proton magnetic resonance spectroscopy ((1)H MRS) provides a noninvasive way to investigate in vivo neurochemical abnormalities. Each observable metabolite can potentially provide information about unique in vivo pathological processes at the molecular or cellular level. In this study, the age-dependent 1H MRS profile of transgenic AD mice was compared to that of wild-type mice. Twenty-seven APP-PS1 mice (which coexpress mutated human presenilin 1 and amyloid-beta precursor protein) and 30 wild-type mice age 66-904 days were examined, some repeatedly. A reduction in the levels of N-acetylaspartate and glutamate, compared with total creatine levels, was found in APP-PS1 mice with advancing age. The most striking finding was a dramatic increase in the concentration of myo-inositol with age in APP-PS1 mice, which was not observed in wild-type mice. The age-dependent neurochemical changes observed in APP-PS1 mice agree with results obtained from in vivo human MRS studies. Among the different transgenic mouse models of AD that have been studied with 1H MRS, APP-PS1 mice seem to best match the neurochemical profile exhibited in human AD. 1H MRS could serve as a sensitive in vivo surrogate indicator of therapeutic efficacy in trials of agents designed to reduce neurotoxicity due to microglial activation. Because of its noninvasive and repeatable nature, MRS in transgenic models of AD could substantially accelerate drug discovery for this disease.
منابع مشابه
Proton and phosphorus magnetic resonance spectroscopy of a mouse model of Alzheimer's disease.
The development of new diagnostic criteria for Alzheimer's disease (AD) requires new in vivo markers reflecting early pathological changes in the brain of patients. Magnetic resonance (MR) spectroscopy has been shown to provide useful information about the biochemical changes occurring in AD brain in vivo. The development of numerous transgenic mouse models of AD has facilitated the evaluation ...
متن کاملApplication of magnetic resonance spectroscopy for evaluating metabolic alteration in anterior cingulate cortex in Alzheimer's disease
Introduction: Alzheimer’s disease (AD) is the most common cause of dementia worldwide. Mild cognitive impairment (MCI) is often the prodromal stage to AD. Most patients with MCI harbor the pathologic changes of AD and demonstrate transition to AD at a rate of 10–15% per year. Accumulating evidence indicates that the asymmetry changes of left and right brain have happened in the early stage of A...
متن کاملIn vivo localized two dimensional MR spectroscopy to compare the neurochemical profile in wild-type and transgenic mouse model of Alzheimer’s disease
Introduction Currently a definitive diagnosis of Alzheimer’s disease (AD) is only possible postmortem, by detecting the two hallmarks of the disease: amyloid plaques and neurofibrillary tangles in the brain tissue. There is thus a great need for in vivo biomarkers to diagnose AD with high specificity and sensitivity. Proton magnetic resonance spectroscopy (H MRS) provides a non-invasive way to ...
متن کاملMetabolic progression markers of neurodegeneration in the transgenic G93A-SOD1 mouse model of amyotrophic lateral sclerosis.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. Visualizing corresponding metabolic changes in the brain of patients with ALS with proton magnetic resonance spectroscopy ((1)H-MRS) may provide surrogate markers for an early disease detection, for monitoring the progression and for evaluating a treatment response. The...
متن کاملTreatment monitoring and response prediction with proton MR spectroscopy in AD.
In this proton magnetic resonance spectroscopy ((1)H-MRS) study, the authors correlated cognitive improvement after 3 months of treatment with donepezil with changes of N-acetylaspartate (NAA) level and NAA/Creatine (Cr) ratio in the medial temporal and parietal lobe of 17 patients with Alzheimer disease. Treatment response was associated with an increase of NAA and NAA/Cr in the parietal lobe....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 33 شماره
صفحات -
تاریخ انتشار 2005